
Jeff Larkin

larkin@cray.com

 Goal of scientific libraries

Improve Productivity at optimal performance

 Cray use four concentrations to achieve this

 Standardization
 Use standard or “de facto” standard interfaces whenever available

 Hand tuning
 Use extensive knowledge of target processor and network to optimize common code

patterns

 Auto-tuning
 Automate code generation and a huge number of empirical performance evaluations

to configure software to the target platforms

 Adaptive Libraries
 Make runtime decisions to choose the best kernel/library/routine

2

3

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

IRT – Iterative Refinement Toolkit

CASK – Cray Adaptive Sparse Kernels

CRAFFT – Cray Adaptive FFT

CASE – Cray Adaptive Simplified Eigensolver

4

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Tuned for
interconnect

Tuned for
Processor

5

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Auto-tuned and
adaptiveAdaptive

6

FFT

CRAFFT

FFTW

P-CRAFFT

Dense

BLAS

LAPACK

ScaLAPACK

IRT

CASE

Sparse

CASK

PETSc

Trilinos

Tuned for
Hybrid

Tuned for
network

Tuned for
threading

 BLAS

 LAPACK

 SCALAPACK

 BLACS

 PBLAS

 ACML

 FFTW 2&3

 PETSC

 TRILINOS

 IRT*

 MUMPS

 ParMetis

 SuperLU

 SuperLU_dist

 Hypre

 Scotch

 Sundials

 CASK*

 CRAFFT*

 CASE*

3/4/2011 7

* Cray-specific

 There are many libsci libraries on the systems

 One for each of

 Compiler (intel, cray, gnu, pathscale, pgi)

 Single thread, multiple thread

 Target (istanbul)

 Best way to use libsci is to ignore all of this

 Load the xtpe-module (loaded here by default)

 module load xtpe-istanbul

 Cray’s compiler drivers will link the library automatically

 PETSc, Trilinos, fftw, acml all have their own module

8

 Perhaps you want to link another library such as ACML

 This can be done. If the library is provided by Cray, then load
the module. The link will be performed with the libraries in the
correct order.

 If the library is not provided by Cray and has no module, add it
to the link line.

 Items you add to the explicit link will be in the correct place

 Note, to get explicit BLAS from ACML but scalapack from libsci

 Load acml module. Explicit calls to BLAS in code resolve
from ACML

 BLAS calls from the scalapack code will be resolved from
libsci (no way around this)

9

 I recommend adding options to the linker to make sure you have the
correct library loaded.

 –Wl, -ydgemm_ will return :

cc -L./ -o mmulator blas_test.o netlib_dgemm.o -Wl,-ydgemm_

blas_test.o: reference to dgemm_

/opt/xt-libsci/10.4.9/cray/lib/libsci.a(dgemm.o): definition
of dgemm_

 Threading capabilities in previous libsci versions were poor

 Used PTHREADS (more explicit affinity etc)

 Required explicit linking to a _mp version of libsci

 Was a source of concern for some applications that need
hybrid performance and interoperability with openMP

 LibSci 10.4.2 February 2010

 OpenMP-aware LibSci

 Allows calling of BLAS inside or outside parallel region

 Single library supported (there is still a single thread lib)

 Usage – load the xtpe module for your system (istanbul)

GOTO_NUM_THREADS outmoded – use OMP_NUM_THREADS

 Allows seamless calling of the BLAS within or without a parallel
region

e.g. OMP_NUM_THREADS = 6

call dgemm(…) threaded dgemm is used with 6 threads

!$OMP PARALLEL DO

do

call dgemm(…) single thread dgemm is used

end do

12

 OMP_NUM_THREADS controls both types of parallelism

 Library sets buffers based on OMP_NUM_THREADS on first call

 The side effect to this model it is not possible to have ‘split-
parallelism’

 Changing dynamically OMP_SET_NUM_THREADS is not
possible!

 We are working on a more flexible scheme for release early
2011

13

0

20

40

60

80

100

120
G

FL
O

P
s

Dimension (square)

Libsci DGEMM efficiency

1thread

3threads

6threads

9threads

12threads

0

20

40

60

80

100

120

140

1 2 4 8 12 16 20 24

G
FL

O
P

S

Number of threads

DGEMM performance on 2 x MC12 2.0 GHz
K=64

K=128

K=200

K=228

K=256

K=300

K=400

K=500

K=600

K=700

K=800

 Memory-bound code doesn’t thread well.

 But, you can still obtain a little speed-up because you use
more memory channels when you use threads.

 Some of the BLAS2 can exhibit some speed-up with threading

16

 module load xtpe-instanbul

 No need to explicit link

 Add –Wl,-ydgemm_ to link line

 Set OMP_NUM_THREADS in job script

 Run with aprun –n 1 –d6 ./exec (for 6 threads)

17

 LAPACK is the very popular linear algebra library for on-node

 Cray’s implementation of LAPACK is tuned.

 LAPACK is threaded in the same way as BLAS

 In some routines, the threading is at a higher level than the
BLAS updates (LU, Cholesky, QR, some eigensolvers)

 Usage is exactly the same as with the BLAS

19

0

20

40

60

80

100

120

1 2 4 6 8 12 16 20 24

G
FL

O
P

S

threads

Threaded LAPACK DGETRF GFLOPS numbers for various thread
counts

-cc none

-cc cpu

 ScaLAPACK is the near-standard parallel linear algebra library

 Uses distributed memory BLAS, PBLAS

 Uses BLACS for communication

 Using scalapack across nodes and threaded BLAS within nodes
is the simplest way to obtain hybrid MPP + thread functionality

 Cray have tuned ScaLAPACK on previous machines, and we are
doing so now on XE6.

 Cray has a strong track record of tuning parallel linear algebra
for older systems – T3E, X1

 Used shmem to replace key communication schemes

 On XE, use many of the same techniques and some new ones

 Focusing on the LU, Cholesky, divide and conquer
eigensolver, tridiagonal reduction

 Using more asynchronous communications in factorizations

 Replacing MPI with co-array fortran and shmem

21

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=65536

libsci 10.4.9

Prototype

22

23

0

5000

10000

15000

20000

25000

0 2000 4000 6000 8000 10000

G
FL

O
P

S

of Cores

PDGESV Performance N=131072

libsci 10.4.9

prototype

 Use the number of scalapack grid points you want to
correspond to the number of MPI ranks you want

 Rely on the BLAS to operate with the number of threads you
desire

 Use OMP_NUM_THREADS and the aprun options to set the
number of threads you need for on-node parallelism

 Set the threads per node from libsci BLAS with
OMP_NUM_THREADS

 Use aprun options –n and –d for nodes and threads

 Mixed precision can yield a big win on x86 machines.

 SSE (and AVX) units issue double the number of single precision operations
per cycle.

 On CPU, single precision is always 2x as fast as double

 Accelerators sometimes have a bigger ratio

 Cell – 10x

 Older NVIDIA cards – 7x

 New NVIDIA cards (2x)

 Newer AMD cards (> 2x)

 IRT is a suite of tools to help exploit single precision

 A library for direct solvers

 An automatic framework to use mixed precision under the

 A domain-specific language and preprocessor to convert codes to use
mixed precision without active code change

25

 Various tools for solves linear systems in mixed precision

 Obtaining solutions accurate to double precision
 For well conditioned problems

 Serial and Parallel versions of LU, Cholesky, and QR

 2 usage methods
 IRT Benchmark routines

 Uses IRT 'under-the-covers' without changing your code
 Simply set an environment variable
 Useful when you cannot alter source code

 Advanced IRT API
 If greater control of the iterative refinement process is required

 Allows
 condition number estimation
 error bounds return
 minimization of either forward or backward error
 'fall back' to full precision if the condition number is too high
 max number of iterations can be altered by users

26

Decide if you want to use advanced API or benchmark API

benchmark API :
setenv IRT_USE_SOLVERS 1

advanced API :

1. locate the factor and solve in your code (LAPACK or ScaLAPACK)

2. Replace factor and solve with a call to IRT routine

 e.g. dgesv -> irt_lu_real_serial

 e.g. pzgesv -> irt_lu_complex_parallel

 e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments

 Forward error convergence for most accurate solution

 Condition number estimate

 “fall-back” to full precision if condition number too high

27

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

Se
co

n
d

s
PDGESV on MC8

pdgesv

pdgesv_w_irt

0

20000

40000

60000

80000

100000

120000

140000

160000

4 8 16 32 64 128 256 512

M
FL

O
P

S
PDGESV on MC12

pdgesv_with_irt

pdgesv

 Serial CRAFFT is largely a productivity enhancer

 Some FFT developers have problems such as
 Which library choice to use?

 How to use complicated interfaces (e.g., FFTW)

 Standard FFT practice
 Do a plan stage

 Do an execute

 CRAFFT is designed with simple-to-use interfaces
 Planning and execution stage can be combined into one

function call
 Underneath the interfaces, CRAFFT calls the appropriate

FFT kernel

30

1. Load module fftw/3.2.0 or higher.

2. Add a Fortran statement “use crafft”

3. call crafft_init()

4. Call crafft transform using none, some or all optional
arguments (as shown in red)

In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :

crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

31

 Parallel CRAFFT is meant as a performance improvement to FFTW2 distributed
transforms

 Uses FFTW3 for the serial transform

 Uses ALLTOALL instead of ALLTOALLV where possible

 Overlaps the local transpose with the parallel communications

 Uses a more adaptive communication scheme based on input

 Can provide impressive performance improvements over FFTW2

 Currently implemented

 complex-complex

 Real-complex and complex-real

 3-d and 2-d

 In-place and out-of-place

 1 data distribution scheme but looking to support more (please tell us)

 C language support for serial and parallel

 Generic interfaces for C users (use C++ compiler to get these)

32

1. Add “use crafft” to Fortran code

2. Initialize CRAFFT using crafft_init

3. Assume MPI initialized and data distributed (see manpage)

4. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :

call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :

call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :

crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has manpage. Also see 3d equivalent :

man crafft_pz2z3d

33

0

10

20

30

40

50

60

70

G
fl

o
p

s

Sizes

2D C2R FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

G
fl

o
p

s

Sizes

2D R2C FFT on 32 MC12 cores

crafft/transp

crafft/normal

fftw2/transp

fftw2/normal

36

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

8192 16384 32768 65536 131072

G
FL

O
P

S

Transform size

CRAFFT on XE6 - 2048 cores

CRAFFT

fftw2

 At one time Cray provided both

 Custom sparse direct solvers

 Custom sparse iterative solvers

 There has been an evolution towards using standardized
frameworks such as Trilinos & PETSc

 Today, we attempt to provide that same performance boost
while maintaining productivity

 CASK library – optimizes sparse matrix operations on Cray
computers whilst being invisible to the user

 Cray Trilinos distribution

 Cray PETSc distribution

 Serial and Parallel versions of sparse iterative linear solvers

 Suites of iterative solvers
 CG, GMRES, BiCG, QMR, etc.

 Suites of preconditioning methods
 IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR

 Support block sparse matrix data format for better
performance

 Interface to external packages (ScaLAPACK, SuperLU_DIST)

 Fortran and C support

 Newton-type nonlinear solvers

 Extremely large user community in US and Europe

 http://www-unix.mcs.anl.gov/petsc/petsc-as

38

http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as
http://www-unix.mcs.anl.gov/petsc/petsc-as

 Cray provides

 Hypre: scalable parallel preconditioners

 ParMetis: parallel graph partitioning package

 MUMPS: parallel multifrontal sparse direct solver

 SuperLU: sequential version of SuperLU_DIST

 To use Cray-PETSc, load the appropriate module :

module load petsc

(or) module load petsc-complex

(no need to load a compiler specific module)

 Treat the Cray distribution as your local PETSc installation

PETSc is not threaded!
39

 The Trilinos Project http://trilinos.sandia.gov/

“an effort to develop algorithms and enabling technologies
within an object-oriented software framework for the solution
of large-scale, complex multi-physics engineering and scientific
problems”

 A unique design feature of Trilinos is its focus on packages.

 Very large user-base and growing rapidly. Important to DOE.

 Cray’s optimized Trilinos released on January 21 2010

 Includes 50+ trilinos packages

 Optimized via CASK

 Any code that uses Epetra objects can access the
optimizations

 Usage : module load trilinos

40

 CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

 Uses ATF auto-tuning, specialization and Adaptation concepts

 Offline :

 ATF program builds many thousands of sparse kernel

 Testing program defines matrix categories based on density, dimension
etc

 Each kernel variant is tested against each matrix class

 Performance table is built and adaptive library constructed

 Runtime

 Scan matrix at very low cost

 Map user’s calling sequence to nearest table match

 Assign best kernel to the calling sequence

 Optimized kernel used in iterative solver execution

41

42

• Highly portable

• User controlled

Large-scale application

• Highly portable

• User controlled

PETSc / Trilinos / Hypre

• XT4 & XT5
specific / tuned

• Invisible to
User

CASK

All systems

Cray only

0

10000

20000

30000

40000

50000

60000

70000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Strong Scalability on Shanghai XT5

PETSc-3.1 PETSC-3.1 CASK

0

20000

40000

60000

80000

0 50 100 150 200 250 300

M
Fl

o
p

s

of PEs

PETSc Weak Scalability on Shanghai XT5
N=65,536-16,777,216

PETSc-3.1 PETSC-3.1 CASK

44

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1

1.1

1.2

1.3

1.4

0 10 20 30 40 50 60

Sp
e

e
d

-u
p

CASK + PETSc XT5 single node (60 matrices)

0

500

1000

1500

2000

M
Fl

o
p

s

Matrix Name

Trilinos + CASK on Instanbul, single node

 MC12 is the first entirely automated CASK

 ATF used for all stages

 Codegen

 Testing, search

 Execution

 Automation of adaptive lirbrary

 Released September 2010

 Eigensolvers are extremely complicated to use

 Often require quite complicated calling sequences

 Also often require complicated work array set-up

 CASE is a simplified interface into the existing eigensolers

 CASE is also an adaptive framework to use a faster eigensolver

47

 real and complex, serial and parallel wrappers for eigensolvers

 Very simple overloaded/generic interfaces

 Use a fortran module (‘use case’ in fortran file)

 Use a C++ header (c users)

 Creates all work arrays for you

 Deduces form the arguments that you pass what type of
functionality you require, and calls the best eigensolver for the
problem you want

 Can also get adaptive eigensolver by setting
CASE_USE_FASTEST

 Now has generic interfacing for both Fortan and C (if using CC)

48

 GPU and hybrid library execution

 BLAS, LAPACK, FFT, Sparse MV

 BLAS is tuned via the auto-tuning framework

 LAPACK is tuned to avoid as much of the communications cost
as possible

 FFT is tuned assuming that the

 If you want to obtain accelerated library codes, add –lsci_acc
to the link (likely a xtpe-accel module will be available), then
relink.

 Work with the code developers to make applications scale to
the next level

 Prepared to go outside of the bounds of what library vendors
normally provide

 Specialization model, and auto-specialization with training
runs

 Kernel auto-tuning using a framework for advanced users

 Highly optimized hyrbid libraries for CPU and Accelerator

50

